
Jeff Larkin

larkin@cray.com

 Goal of scientific libraries

Improve Productivity at optimal performance

 Cray use four concentrations to achieve this

 Standardization
 Use standard or “de facto” standard interfaces whenever available

 Hand tuning
 Use extensive knowledge of target processor and network to optimize common code

patterns

 Auto-tuning
 Automate code generation and a huge number of empirical performance evaluations

to configure software to the target platforms

 Adaptive Libraries
 Make runtime decisions to choose the best kernel/library/routine

2

3

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

4

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Tuned for
interconnect

Tuned for
Processor

5

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Auto-tuned and
adaptiveAdaptive

6

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Tuned for
Hybrid

Tuned for
network

Tuned for
threading

 BLAS

 LAPACK

 SCALAPACK

 BLACS

 PBLAS

 ACML

 FFTW 2&3

 PETSC

 TRILINOS

 IRT*

 MUMPS

 ParMetis

 SuperLU

 SuperLU_dist

 Hypre

 Scotch

 Sundials

 CASK*

 CRAFFT*

 CASE*

3/4/2011 7

* Cray-specific

 There are many libsci libraries on the systems

 One for each of

 Compiler (intel, cray, gnu, pathscale, pgi)

 Single thread, multiple thread

 Target (istanbul)

 Best way to use libsci is to ignore all of this

 Load the xtpe-module (loaded here by default)

 module load xtpe-istanbul

 Cray’s compiler drivers will link the library automatically

 PETSc, Trilinos, fftw, acml all have their own module

8

 Perhaps you want to link another library such as ACML

 This can be done. If the library is provided by Cray, then load
the module. The link will be performed with the libraries in the
correct order.

 If the library is not provided by Cray and has no module, add it
to the link line.

 Items you add to the explicit link will be in the correct place

 Note, to get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve
from ACML

 BLAS calls from the scalapack code will be resolved from
libsci (no way around this)

9

 I recommend adding options to the linker to make sure you have the
correct library loaded.

 –Wl, -ydgemm_ will return :

cc -L./ -o mmulator blas_test.o netlib_dgemm.o -Wl,-ydgemm_

blas_test.o: reference to dgemm_

/opt/xt-libsci/10.4.9/cray/lib/libsci.a(dgemm.o): definition
of dgemm_

 Threading capabilities in previous libsci versions were poor

 Used PTHREADS (more explicit affinity etc)

 Required explicit linking to a _mp version of libsci

 Was a source of concern for some applications that need
hybrid performance and interoperability with openMP

 LibSci 10.4.2 February 2010

 OpenMP-aware LibSci

 Allows calling of BLAS inside or outside parallel region

 Single library supported (there is still a single thread lib)

 Usage – load the xtpe module for your system (istanbul)

GOTO_NUM_THREADS outmoded – use OMP_NUM_THREADS

 Allows seamless calling of the BLAS within or without a parallel
region

e.g. OMP_NUM_THREADS = 6

call dgemm(…) threaded dgemm is used with 6 threads

!$OMP PARALLEL DO

do

call dgemm(…) single thread dgemm is used

end do

12

 OMP_NUM_THREADS controls both types of parallelism

 Library sets buffers based on OMP_NUM_THREADS on first call

 The side effect to this model it is not possible to have ‘split-
parallelism’

 Changing dynamically OMP_SET_NUM_THREADS is not
possible!

 We are working on a more flexible scheme for release early
2011

13

0

20

40

60

80

100

120
G

FL
O

P
s

Dimension (square)

Libsci DGEMM efficiency

1thread

3threads

6threads

9threads

12threads

0

20

40

60

80

100

120

140

1 2 4 8 12 16 20 24

G
FL

O
P

S

Number of threads

DGEMM performance on 2 x MC12 2.0 GHz
K=64

K=128

K=200

K=228

K=256

K=300

K=400

K=500

K=600

K=700

K=800

 Memory-bound code doesn’t thread well.

 But, you can still obtain a little speed-up because you use
more memory channels when you use threads.

 Some of the BLAS2 can exhibit some speed-up with threading

16

 module load xtpe-instanbul

 No need to explicit link

 Add –Wl,-ydgemm_ to link line

 Set OMP_NUM_THREADS in job script

 Run with aprun –n 1 –d6 ./exec (for 6 threads)

17

 LAPACK is the very popular linear algebra library for on-node

 Cray’s implementation of LAPACK is tuned.

 LAPACK is threaded in the same way as BLAS

 In some routines, the threading is at a higher level than the
BLAS updates (LU, Cholesky, QR, some eigensolvers)

 Usage is exactly the same as with the BLAS

19

0

20

40

60

80

100

120

1 2 4 6 8 12 16 20 24

G
FL

O
P

S

threads

Threaded LAPACK DGETRF GFLOPS numbers for various thread
counts

-cc none

-cc cpu

 ScaLAPACK is the near-standard parallel linear algebra library

 Uses distributed memory BLAS, PBLAS

 Uses BLACS for communication

 Using scalapack across nodes and threaded BLAS within nodes
is the simplest way to obtain hybrid MPP + thread functionality

 Cray have tuned ScaLAPACK on previous machines, and we are
doing so now on XE6.

 Cray has a strong track record of tuning parallel linear algebra
for older systems – T3E, X1

 Used shmem to replace key communication schemes

 On XE, use many of the same techniques and some new ones

 Focusing on the LU, Cholesky, divide and conquer
eigensolver, tridiagonal reduction

 Using more asynchronous communications in factorizations

 Replacing MPI with co-array fortran and shmem

21

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=65536

libsci 10.4.9

Prototype

22

23

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=131072

libsci 10.4.9

prototype

 Use the number of scalapack grid points you want to
correspond to the number of MPI ranks you want

 Rely on the BLAS to operate with the number of threads you
desire

 Use OMP_NUM_THREADS and the aprun options to set the
number of threads you need for on-node parallelism

 Set the threads per node from libsci BLAS with
OMP_NUM_THREADS

 Use aprun options –n and –d for nodes and threads

 Mixed precision can yield a big win on x86 machines.

 SSE (and AVX) units issue double the number of single precision operations
per cycle.

 On CPU, single precision is always 2x as fast as double

 Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x)

 Newer AMD cards (> 2x)

 IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the

 A domain-specific language and preprocessor to convert codes to use
mixed precision without active code change

25

 Various tools for solves linear systems in mixed precision

 Obtaining solutions accurate to double precision
 For well conditioned problems

 Serial and Parallel versions of LU, Cholesky, and QR

 2 usage methods
 IRT Benchmark routines

 Uses IRT 'under-the-covers' without changing your code
 Simply set an environment variable
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

26

Decide if you want to use advanced API or benchmark API

benchmark API :
setenv IRT_USE_SOLVERS 1

advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

27

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

Se
co

n
d

s
PDGESV on MC8

pdgesv

pdgesv_w_irt

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

M
FL

O
P

S
PDGESV on MC12

pdgesv_with_irt

pdgesv

 Serial CRAFFT is largely a productivity enhancer

 Some FFT developers have problems such as
 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

 Standard FFT practice
 Do a plan stage

 Do an execute

 CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one

function call
 Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

30

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :

crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

31

 Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALL instead of ALLTOALLV where possible

 Overlaps the local transpose with the parallel communications

 Uses a more adaptive communication scheme based on input

 Can provide impressive performance improvements over FFTW2

 Currently implemented

 complex-complex

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

 C language support for serial and parallel

 Generic interfaces for C users (use C++ compiler to get these)

32

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :

man crafft_pz2z3d

33

0

10

20

30

40

50

60

70

G
fl

o
p

s

Sizes

2D C2R FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

G
fl

o
p

s

Sizes

2D R2C FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

36

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

8192 16384 32768 65536 131072

G
FL

O
P

S

Transform size

CRAFFT on XE6 - 2048 cores

CRAFFT

fftw2

 At one time Cray provided both

 Custom sparse direct solvers

 Custom sparse iterative solvers

 There has been an evolution towards using standardized
frameworks such as Trilinos & PETSc

 Today, we attempt to provide that same performance boost
while maintaining productivity

 CASK library – optimizes sparse matrix operations on Cray
computers whilst being invisible to the user

 Cray Trilinos distribution

 Cray PETSc distribution

 Serial and Parallel versions of sparse iterative linear solvers

 Suites of iterative solvers
 CG, GMRES, BiCG, QMR, etc.

 Suites of preconditioning methods
 IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR

 Support block sparse matrix data format for better
performance

 Interface to external packages (ScaLAPACK, SuperLU_DIST)

 Fortran and C support

 Newton-type nonlinear solvers

 Extremely large user community in US and Europe

 http://www-unix.mcs.anl.gov/petsc/petsc-as

38

http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as

 Cray provides

 Hypre: scalable parallel preconditioners

 ParMetis: parallel graph partitioning package

 MUMPS: parallel multifrontal sparse direct solver

 SuperLU: sequential version of SuperLU_DIST

 To use Cray-PETSc, load the appropriate module :

module load petsc

(or) module load petsc-complex

(no need to load a compiler specific module)

 Treat the Cray distribution as your local PETSc installation

PETSc is not threaded!
39

 The Trilinos Project http://trilinos.sandia.gov/

“an effort to develop algorithms and enabling technologies
within an object-oriented software framework for the solution
of large-scale, complex multi-physics engineering and scientific
problems”

 A unique design feature of Trilinos is its focus on packages.

 Very large user-base and growing rapidly. Important to DOE.

 Cray’s optimized Trilinos released on January 21 2010

 Includes 50+ trilinos packages

 Optimized via CASK

 Any code that uses Epetra objects can access the
optimizations

 Usage : module load trilinos

40

 CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

 Uses ATF auto-tuning, specialization and Adaptation concepts

 Offline :

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

 Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution

41

42

• Highly portable

• User controlled

Large-scale application

• Highly portable

• User controlled

PETSc / Trilinos / Hypre

• XT4 & XT5
specific / tuned

• Invisible to
User

CASK

All systems

Cray only

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Strong Scalability on Shanghai XT5

PETSc-3.1 PETSC-3.1 CASK

0

20000

40000

60000

80000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Weak Scalability on Shanghai XT5
N=65,536-16,777,216

PETSc-3.1 PETSC-3.1 CASK

44

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

Sp
e

e
d

-u
p

CASK + PETSc XT5 single node (60 matrices)

0

500

1000

1500

2000

M
Fl

o
p

s

Matrix Name

Trilinos + CASK on Instanbul, single node

 MC12 is the first entirely automated CASK

 ATF used for all stages

 Codegen

 Testing, search

 Execution

 Automation of adaptive lirbrary

 Released September 2010

 Eigensolvers are extremely complicated to use

 Often require quite complicated calling sequences

 Also often require complicated work array set-up

 CASE is a simplified interface into the existing eigensolers

 CASE is also an adaptive framework to use a faster eigensolver

47

 real and complex, serial and parallel wrappers for eigensolvers

 Very simple overloaded/generic interfaces

 Use a fortran module (‘use case’ in fortran file)

 Use a C++ header (c users)

 Creates all work arrays for you

 Deduces form the arguments that you pass what type of
functionality you require, and calls the best eigensolver for the
problem you want

 Can also get adaptive eigensolver by setting
CASE_USE_FASTEST

 Now has generic interfacing for both Fortan and C (if using CC)

48

 GPU and hybrid library execution

 BLAS, LAPACK, FFT, Sparse MV

 BLAS is tuned via the auto-tuning framework

 LAPACK is tuned to avoid as much of the communications cost
as possible

 FFT is tuned assuming that the

 If you want to obtain accelerated library codes, add –lsci_acc
to the link (likely a xtpe-accel module will be available), then
relink.

 Work with the code developers to make applications scale to
the next level

 Prepared to go outside of the bounds of what library vendors
normally provide

 Specialization model, and auto-specialization with training
runs

 Kernel auto-tuning using a framework for advanced users

 Highly optimized hyrbid libraries for CPU and Accelerator

50

